Esta página web utiliza cookies propias y de terceros para mejorar tu experiencia de navegación y realizar tareas de análisis. Al continuar navegando entendemos que aceptas nuestra Política de Cookies.
    
Introduction to Evolutionary Quantitative Genetics
 
 
Objetivos:
 
The rate and direction of adaptive evolution critically depends on the additive genetic variances and covariances underlying the traits subject to selection. As a consequence, understanding the genetic basis of complex morphological, life-history, physiological, ornamental and behavioural traits is crucial if we are to understand their evolutionary potential, and the evolutionary process in general.
 
Quantitative genetics uses the phenotypic resemblance among related individuals to infer the role of genes and the environment in shaping phenotypic variation. Depending on the species, we can use data obtained from breeding experiments in captivity (e.g. insects), or from individual-based monitoring programs in the wild (e.g. birds and mammals). Especially the latter has benefited greatly from the application of animal model methodology, originally developed in animal breeding to identify individuals of high genetic merit. By simultaneously using the resemblance among all individuals in the pedigree, these methods provide more precise and accurate estimates of genetic and non-genetic variance components (heritabilities and genetic correlations). Furthermore, they allow for the estimation of individual-level genetic effects (breeding values), and thereby the inference of evolution.
 
In this course we will cover everything from basic quantitative genetic theory and statistics to advanced mixed model-based approaches. You will learn how to estimate genetic variances and covariances in wild and captive populations, and how to test for evolutionary change. Along the way, you will be exposed to the main software packages, and the R packages MCMCglmm and ASReml-R in particular, and you will learn about their strengths and weaknesses. You are strongly encouraged to bring your own data (if you have it), which you will be able to work on during the course and which will allow you to put the theory into practice
 
Destinatarios:
 
Estudiantes de grado/posgrado en cualquier disciplina de ciencia de la vida. Todos los participantes deben traer su ordenador portatil con sistema operative (Windows, Macintosh, Linux).
 
Conocimientos básicos de R (ej. importar y manipular datos), no es necesario ninguna experiencia previa en genética cuantitativa y modelos animales.
 
PROGRAMA:
 
Monday, April 9th, 2018. (Introduction into quantitative genetics).
 
Morning:
 
  • Quantitative genetic theory
o From single loci with two alleles to the infinitesimal model.
o Additive and non-additive genetic variance.
o Quantifying relatedness and inbreeding.
o Heritability and genetic correlations.
o Evolvability.
  • Basic statistics
o Correlation
o Regression
o ANOVA
  • Estimating heritabilities, Part I
o Parent-offspring regression.
o Fullsib/halfsib analysis
 
Afternoon: (Practical)
 
  • Simulate data on parents and offspring
  • Estimate heritabilities using parent-offspring regression and ANOVA
 
Tuesday, April 10th, 2018. (Mixed models, pedigrees and animal models)
 
Morning: 
 
  • Advanced statistics
o Mixed models
 
  • Estimating heritabilities, Part II
o Mixed model analysis of halfsib data
 
  • Practical 
o Analyse simulated data with mixed model (continuation of Monday afternoon)
 
Afternoon:
 
  • Pedigree reconstruction
o Observational and marker-based
o Pedigree errors
o Software
o Descriptive statistics
o Visualisation
  • Analysis of own (or simulated) data
 
Wednesday, April 11th, 2018. (The animal model).
 
Morning: 
 
  • Estimating heritabilities, Part III
o The animal model
o Software
  • Practical 
o Animal model tutorials ASReml-R and/or MCMCglmm
 
Afternoon: 
 
  • Analysis of own (or simulated) data
 
 
Thursday, April 12th, 2018. (Advanced topics).
 
Morning:
 
  • Multivariate models
o G matrix estimation
o Genotype-environment interactions
o Intersexual genetic correlations
  • Random regression
  • Breeding values
o Prediction
o Inferring evolution
 
Afternoon:
 
  • Analysis of own (or simulated) data.
 
 
Friday, April 13th, 2018. (Advanced topics).
 
Morning: 
 
  • Presentations
 
 
Profesorado:  Dr. Erik Postma, University of Exeter. United Kingdom y Dr. Jesús Martínez-Padilla, Universidad de Oviedo. Spain.
 
 
Duración: 32 horas lectivas.
Número de plazas: 20
Fechas de realización: 9-13 de abril de 2018
Lugar de celebración: Centre de Restauració i Interpretació Paleontològica C/ Mestre J. Lladós, 1, 08781 Els Hostalets de Pierola, Barcelona.
Criterio de admisión: Orden de preinscripción
Fecha comienzo del plazo de inscripción: Abierto.
Precio:
Precio: 590€ (472 € para los/as socios/as de la AEET)
*Visitar web para información sobre opciones de alojamiento 
 
Becas de inscripción AEET
 
La AEET apoya este curso con 1 bolsa de ayuda de 500 €, destinada a uno de sus socios estudiantes. Adjudicación por orden de solicitud. 
 
Los interesados en solicitar la ayuda enviad a info@aeet.org el formulario de solicitud cumplimentado. Para recibir la ayuda será imprescindible adjuntar justificante de pago del curso y certificar la asistencia al mismo.
Formulario solicitud ayuda